Polymerization of N-Vinylcarbazole by Chlorides and Oxychlorides of Some Group V Elements. I. Polymerization by POCl₃, AsCl₃ and SbCl₃

Mukul Biswas and Devapriya Chakravarty

Department of Chemistry, Indian Institute of Technology, Kharagpur, India (Received July 30, 1969)

In the course of our studies¹⁻³) on initiator systems for N-Vinylcarbazole (NVC) polymerization we have observed that POCl₃, AsCl₃ and SbCl₃ can effectively initiate the solution polymerization of NVC. This communication reports our preliminary observations on these systems.

Polymerization was carried out under nitrogen at 30°C with purified and dry reagents. Conversion at intervals of 2, 4, 6 and 8 up to 30 min was followed gravimetrically after purifying the polymer.³⁾ Molecular weights (\overline{M}_n) were determined cryoscopically in benzene. Polymer melting points were >350°C.

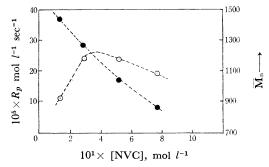
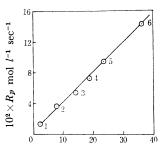



Fig. 1. Dependence of R_p on [NVC] (\odot) and of $\overline{\mathbf{M}}_n$ on [NVC] (\odot); [AsCl₃]=16.2×10⁻⁴ M.

For NVC-AsCl₃-benzene system, R_p was first order in AsCl₃ concentration. The variation of R_p and $\overline{\mathrm{M}}_{\mathrm{n}}$ with NVC concentration is shown in Fig. 1. With NVC-chloranil-nitrobenzene system, Pac and Plesch⁴) found a maximum by plotting specific rate constant against NVC concentration. Dependence of the maximum on AsCl₃ concentration is being investigated. We feel that increased termination and transfer may be important, but any definite comment on this trend would not be justified at this stage.

The reactions were usually exothermic. R_p of NVC-AsCl₃ system was dependent on solvent dielectric constant (Fig. 2) and so was $\overline{\mathbf{M}}_n$ (1269)

Solvent dielectric constant

Fig. 2. Dependence of R_p on solvent dielectric constant. [NVC] =0.29 M; [AsCl₃] =16.2 × 10⁻⁴ M; (1) B (100%); (2) 75% B+25% NB; (3) 50% B+50% NB; (4) 37.5% B+62.5% NB; (5) 25% B+75% NB; (6) NB (100%). (B=Benzene; NB=Nitrobenzene). Values of solvent dielectric constant taken from Ref. 5.

in benzene and 3982 in nitrobenzene, for example). Additives such as water, dimethylaniline, aniline and triethylamine related the rate. These features suggest a cationic mechanism.

Some experiments were performed with POCl₃ and SbCl₃. Thus POCl₃ (0.063 $-0.19\,\mathrm{M}$) and NVC (0.77 M) produced (30°C; benzene; 1320 min) 94% deep yellow orange poly NVC, $\overline{\mathrm{M}}_{\mathrm{n}}$: 2704, mp >350°C. SbCl₃ (0.068 M) and NVC (0.29 M) produced (30°C; benzene; 765 min) 74% white poly NVC, $\overline{\mathrm{M}}_{\mathrm{n}}$: 2254, mp >350°C.

In a few cases a colour change was noted during reaction. With NVC-Fe(NO₃)₃, 9H₂O system Okamura et al.⁶) reported a similar colour change. In our case this colour change was not a necessary condition for polymerization. In fact, colour could be produced by mixing poly NVC with AsCl₃ in benzene. This latter observation may be related to the possibility of charge transfer interaction between poly NVC and AsCl₃. Interaction between poly NVC and acceptors such as SbCl₅ is known.⁷) Spectrophotometric investigations are in progress.

Details of all these observations will appear in due course.

¹⁾ M. Biswas and S. Ghosal, Chem. Ind. (London), 1966, 1717.

²⁾ M. Biswas and I. Kar, Indian J. Chem., 5, 119 (1967).

³⁾ M. Biswas, M. M. Maiti and N. D. Ganguly, Makromolecul. Chem., 124, 263 (1969).

⁴⁾ J. Pac and P. H. Plesch, Polymer (London), 8, 237 (1967).

⁵⁾ D.C. Pepper, Trans. Faraday Soc., 45, 397 (1949).
6) S. Tazuke, T.B. Tjoa and S. Okamura J. Polym. Sci., A-1, 5, 1911 (1967).

⁷⁾ L. P. Ellinger, "Advances in Macromolecular Chemistry," Vol. I, ed. by W. M. Pasika, Academic Press, New York (1968), p. 180 and references cited therein.